Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см. Примем проекцию хорды на диаметр за х. Радиус будет тогда х+7. Высота делит треугольник на два,тоже прямоугольных. В прямоугольном треугольнике справедливы следующие соотношения:1) h² = a₁· b₁;2) b² = b₁ · c;3) a² = a₁ · c,где b₁ и a₁ - проекции катетов b и a на гипотенузу сПрименим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея.h²=x(x+14) h²=30²-x² x(x+14)=30²-x² x²+14х=900 -x²2x²+14х-900=0x²+7х-450=0Решаем уравнение через дискриминант.D = 1849√D = 43Уравнение имеет 2 корня. x 1=18,x 2= -25 ( не подходит). Радиус окружности равен18+7=25 см
Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18
Радиус будет тогда х+7.
Высота делит треугольник на два,тоже прямоугольных. В прямоугольном треугольнике справедливы следующие соотношения:1) h² = a₁· b₁;2) b² = b₁ · c;3) a² = a₁ · c,где b₁ и a₁ - проекции катетов b и a на гипотенузу сПрименим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея.h²=x(x+14)
h²=30²-x²
x(x+14)=30²-x²
x²+14х=900 -x²2x²+14х-900=0x²+7х-450=0Решаем уравнение через дискриминант.D = 1849√D = 43Уравнение имеет 2 корня.
x 1=18,x 2= -25 ( не подходит).
Радиус окружности равен18+7=25 см