Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник
NM = DH = 12 (в прямоугольнике противоположные стороны равны)
HC = DC - DH = 18 - 12 = 6
∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)
Рассмотрим ΔMHC и ΔBNM
∠H = ∠N = 90°
∠DCB = ∠NMB (соответственные при NM || DC секущей BC)
==> ΔMHC ~ ΔBNM по двум углам
В подобных треугольниках соответственные стороны пропорциональны
Синус - отношение противолежащего катета к гипотенузе
б Площа квдарата вимірюється за формолю S=a², де а сторона квадрата. Нехай сторона більшого квадрата дорівнює 3a, тоді меншого дорівнює 2a. Площа меншого квадрата дорівнює 8см², отже 2a*2a=8 4a²=8 a²=2 a=√2 Сторона більшого квадрата дорівнює 3a=3*√2=3√2, отже S= 3√2*3√2=9*2=18см²
б Квадрати між собою зажди подібні, тому відношення площ дорівнбє відношенню сторін піднесених до другої степені. Нехай S₁-площа більшого квадарата, а S₂=8-площа меншого квадрата, 3x-сторона більшого квадрату, 2х-сторона меншого квадрату.
Вроде бы 21, сам(а) как думаешь?