1. Внешний угол тр-ка равен сумме двух не смежных с ним углов. Их отношение друг к другу равно 1:4, то есть они равны Х и 4*Х градусов. Итак Х+4*Х=5*Х=15°. Отсюда Х=3°. Значит наибольший из этих углов равен 3*4=12° 2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°. 3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.
В прямоугольном треугольнике АКС угол К равен 60° (дано). =>
∠САК = 30°, значит АК - биссектриса угла А.
Биссектриса делит противоположную сторону в отношении прилежащих сторон (свойство). Тогда СК/КВ = АС/АВ.
Но АВ = 2·АС (так как катет АС лежит против угла В, равного 30°). =>
СК/КВ = АС/(2АС) = 1/2. =>
СК = КВ/2 = 12/2 = 6 см.
Или так:
∠АКС = 60° (дано) => ∠САК = 30° (по сумме острых углов прямоугольного треугольника САК). => ∠ВАК = 30°. =>
Треугольник АКВ равнобедренный, так как ∠В = 30° (по сумме острых углов прямоугольного треугольника АВС). и ∠ВАК = 30° (доказано выше). =>
АК = ВК = 12 см.
В прямоугольном треугольнике АКС угол КАС = 30°, значит
СК = АК/2 = 12/2 = 6см.
Или так:
Пусть СК = х. => ВС = 12+х.
В прямоугольном треугольнике АВС угол В равен 30° по сумме острых углов.
Tg(∠B) = tg30 = AC/BC = √3/3. =>
AC = √3·(12+х)/3. (1)
В прямоугольном треугольнике АКС угол К равен 60° (дано).
Tg(∠К) = tg60 = AC/CК = √3. =>
AC = х√3. (2).
Приравняем (1) и (2): √3·(12+х)/3 = х√3. => 12+х = 3х. =>
СК = х = 6 см.