Смотри рисунок. Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные. х+2х=180 3х=180 х=60 - это угол OCB. Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов Запишем для угла OCB: cos 60 = BC/AC поскольку по условию AC=100, имеем cos 60= BC/100⇒ BC = 100× cos 60 cos 60 - это табличная величина = 1/2 BC= 100×1/2=50 Запишем для угла OBC: sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25 sin 30 - это табличная величина = 1/ 2 ответ: OC=25
A) Суммой будет вектор, начало которого совпадает с началом первого, а конец - с концом последнего вектора. Вектор LA равен вектору MD, значит вектор а=AD, так как сумма векторов DM+MD=0 (сумма противоположных векторов). ответ: а=AD+DM+LA=AD. б) Разность двух векторов b и a, имеющих общее начало, представляется направленным отрезком, соединяющим концы этих векторов и имеющим направление «к концу того вектора, из которого вычитают». Вектор АС равен разности векторов с-а. Вектор AN=(c-a)/2.Вектор BN=a+(c-a)/2. Вектор BM=(2/3)*(a+(c-a)/2)=(a+c)/3. Вектор SM=(a+c)/3 - b = (a+c-3b)/3.
Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные.
х+2х=180
3х=180
х=60 - это угол OCB.
Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов
Запишем для угла OCB:
cos 60 = BC/AC поскольку по условию AC=100, имеем
cos 60= BC/100⇒ BC = 100× cos 60
cos 60 - это табличная величина = 1/2
BC= 100×1/2=50
Запишем для угла OBC:
sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25
sin 30 - это табличная величина = 1/ 2
ответ: OC=25