Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
Проведи в ромбе диагонали. Они разбили ромб на 4 равных треугольника. Рассмотрим один такой треугольник. Пусть меньший угол равен х, тогда второй угол равен х+40( третий угол прямой и егоне рассматриваем) Вернемся к ромбу-его диагонали являются биссектрисами углов. Значит углы ромба в два раза больше чем углы треугольника. Получаем такие углы: 2х, 2х, 2(х+40), 2(х+40) Составим уравнение по теореме о сумме углов четырехугольника. 2х+2х+2(х+40)+2(х+40)=360 8х+160=360 8х=200 х=25*-это меньший угол треугольника. Посчитаем углы ромба: 2•25=50* меньший угол ромба. 2(25+40)=130* больший угол ромба ответ:углы ромба 50*, 50*, 130*, 130*
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.