(1). Рассмотрим треугольник АВD и АСD. У них :
1) АВ=ВС (по условию )
углы 1 и 2 равны (по условию )
сторона AD общая
Из этого следует, что треугольники равны по 1 признаку равенства треугольников.
2) Из равенства треугольников следует равенство соответственных элементов :
1 углы ACD и АВD равны
2 углы АDВ и АDC равны
Следовательно угол АВD = 38 °, a угол ADB = 102°
(2). Углы ENM и KNF в треугольниках вертикальные, из этого следует, что они равны. MN=NK, EN=NF, из этого следует, что треугольники MNE и KNF равны по первому признаку равенства треугольников.
MK = MN + NK, а так как MN=NK, то MN = 1\2MK = 10\2 = 5 см.
Треугольники равны, значит ME = KF = 8 см.
Рассмотрим треугольники AMP и CKP.По условию задачи угол AMP равен углу PKC;сторона AM равна стороне KC,а углы MAP и KCP равны как углы равнобедренного треугольника,лежащие при основании.Поэтому треугольники AMP и CKP равны по второму признаку равенства треугольников.В равных треугольниках против равных углов лежат равные стороны,поэтому стороны MP и KP этих треугольников равны,что и требовалось доказать.
б)Так как AM=KC по условию,то прямая MK параллельна прямой AC.Так как треугольники AMP и CKP равны,то BP является медианой треугольника ABC.Медиана равнобедренного треугольника является также его биссектрисой и высотой. BP перпендикулярна к прямой AC ,а т.к. прямая AC параллельна прямой MK ,то высота BP перпендикулярна к прямой MK,что и требовалось доказать.