ответ: Дано:
∆АВС - рівнобедрений; АС - основа; BD - бісектриса;
М є BD. АВ ‖ ME; ВС ‖ MF. Довести: DE = DF.
Доведения:
За умовою ∆АВС - рівнобедрений (АВ = ВС).
За умовою BD - бісектриса.
За властивістю piвнобедреного трикутника маємо: BD - висота.
BD ┴ АС, тобто ∟MDE = ∟MDF = 90°.
За властивістю кутів р1внобедреного трикутника маємо: ∟A = ∟C.
За умовою АВ ‖ ME; AC - січна, тоді за ознакою паралельності прямих маємо: ∟BAC = ∟MEC (відповідні).
Аналогічно: MF ‖ ВС; АС - січна, ∟BCA = ∟MFA.
Якщо ∟A = ∟C; ∟A = ∟MED; ∟C = ∟MFD, тоді ∟MEF = ∟MFE.
Тодф ∆EMF - рівнобедрений. MD - висота, тоді MD - медіана, отже DE = EF.
Доведено.
Объяснение:
Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм,
расстояние между В и С можт быть
1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А
2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А