1. Т.к. треугольник равнобедренный, то высота=биссектриса=медиана ⇒ делит угол 120° на два по 60, образует с основанием два угла по 90° ⇒ образуются два одинаковых прямоугольных Δ. Углы при основании по 30°, сторона, противолежащая углу в 30 = половине гипотенузы ⇒ гипотенуза в данном случае = 9*2=18.
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и площади боковой поверхности. Для ответа на вопрос задачи нужно найти высоту фигуры. Известна площадь большего диагонального сечения АСС₁А₁. S АСС₁А₁=AC*СС₁=63 см² Параллелепипед прямой, рёбра перпендикулярны основанию ⇒ СС₁=высота параллелепипеда. АС найдем из треугольника АВС по т. косинусов. Сумма углов при одной из сторон параллелограмма равна 180°⇒ угол АВС=120° АС²=АВ²+ВС² -2*AB*BC*cos120° АС²=9+25- 30*(-1/2) АС²=49 АС=7см Тогда СС1=S AA1C1C:AC=63:7=9 см
Формула площади параллелограмма через стороны и угол между ними
S=a•b•sinα
Площадь двух оснований =2•S(АВСD)=AB•AD•sin60°=15√3
S полная=15√3+2•(3+5)*9=(15√3+144 )cм² или приближённо 170 см²
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.