Δ АВС - равнобедренныйВК = 30 см - биссектриса к основанию АС, она же и медиана Δ АВС ⇒ АК=КСNM = 16 см - средняя линия II АС ⇒AN=NBNK = ? - средняя линия II ВС NM x ВК в т.О и деляться ей пополам, т.к. Δ NMB подобен Δ АВС по 3-м углам, ⇒ Δ NMB равнобедренный и ВО его высота, биссектриса и медиана. ВО=ВК т.к. NM средняя линия Δ АВСПолучаемNO=1/2NM= 16/2=8OK=1/2ВК= 30/2=15Δ NOK прямоугольный, т.к. уже доказано, что BO высота Δ NMB ⇒ <BON = 90°<NOK - смежный и =180°-<BON = 90°По теореме Пифагора находим NK - гипотенузу Δ NOK NK=√(NO²+OK²) = √(8²+15²)=√(64+225)=√289=17 см
Дано: А(-1;2) , B(5:-6), C(6;4) Найти: CD Решение: 1) Т.к. CD - медиана, то точка D будет серединой отрезка AB , поскольку из вершины С к стороне AB идёт отрезок, делящий её пополам. => AD=DB 2) Обозначим на координатной плоскости точки A,B,C с их координатами и соединим их отрезками. 3) найдём длину AB и поделки её пополам, чтобы найти середину отрезка и обозначим точку D AB = √((5+1)^2 + (-8)^2) = √(36+64) = √100 = 10 D имеет координаты по X суммы B(x) + A(x) , делённое на два и Y суммы B(y) + A(y) , делённое на два. Получается D X= (5-1)/2 ; Y= (-6+2)/2 => D(2;-2) 4) CD = √((6-2)^2 + (4+2)^2) = √(16+36) = √52 = √4*13 = 2√13 ответ: 2√13
К этому решению также приведен чертеж на фотографии.