Задача 10(2) . Почему в ответе получилось 4 корней из 6 у неё? А у меня получилось 96. Если ответите то поставлю с вашим примером, и поставлю ваш ответ лучше!
Прямые ΑΒ и СD перпендикулярны плоскости α и Β,D∈α, ΑС пересекает плоскость α в точке Р. Найдите ΡD, если ΑΒ=12см, ΒD=СD=3см
Задача на подобие треугольников. АВ и СД перпендикулярны плоскости α и поэтому параллельны между собой. Два прямоугольных треугольника PCD и АВР подобны по равенству углов. (Если в прямоугольных треугольниках равен один из острых углов, то они подобны) Из подобия треугольников вытекает отношение АВ:СD=PB:PD Пусть PD=x, тогда РВ= BD+PD=3+x 12:3=(x+3):x Произведение крайних членов пропорции равно произведению ее средних членов. 12х=3х+9 9х=9 х=1 PD=1 см
Проведём радиусы ОА и ОД окружности описанной около треугольника АDF(смотри рисунок). Угол АОД окружности (на рисунке не показана)-центральный, а АFД –вписаный. Но они оба опираются на одну дугу АД. То есть угол АОД в два раза больше угла АFД(условно обозначен 1). Треугольник АОД- равнобедренный(АО и ОД радиусы), высота ОЕ делит угол АОД пополам. Отсюда угол ОАЕ=90-угол1. Далее- угол СВД равен углу АFВ как накрест лежащие поскольку АF параллельна ВС. Но угол СВД равен углу САД поскольку они оба опираются на дугу СД. Тогда угол ОАС =угол САД+ угол ОАД=угол1+угол90-угол1=90градусов. То есть радиус ОА окружности описанной около АДF перпендикулярен АС. А это значит , что окружность касается этой прямой.
Объяснение:
Это одно и тоже.
4√6=√16*6=√96.