а) BC1 || AD1, поэтому угол между прямыми AB1 и BC1 равен углу между AB1 и AD1.
ребро куба равно а, поэтому (так как грани куба - квадраты), то AB1=AD1=B1D1, а значит треугольник AB1D1 - правильный(равносторонний),
углы равностороннего треугольника равны 60 градусов,
значит искомый угол между прямыми AB1 и BC1 равен 60 градусов
б) так как В1С1 - перпендикуляр с точки С1 на грань АА1В1В, то угол между прямой AC1 и гранью AA1B1B равен углу В1АС1
(треугольник АВ1С1 - прямоугольным с прямым углом АВ1С1)
по свойству диагонали квадрата
по свойству диагонали куба
угол В1АС1 равен arccos корень(2/3)т.е.
угол между прямой AC1 и гранью AA1B1B равен arccos корень(2/3) градусов
1. Основания равнобедренной трапеции равны. - нет
2. Диагональ любого прямоугольника делит его на 2 равных треугольника. - да
3. Две прямые, параллельные третьей прямой, перпендикулярны друг другу. - нет
4. Вертикальные углы равны. - да
5. Если один из двух смежных углов острый, то другой тупой. - да
6. Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны. - нет
7. Диагонали ромба равны. - нет
8. Существует треугольник с углами 47° , 56° и 87° - нет
9. Любой четырехугольник, у которого все углы равны является квадратом. - нет
10. Медиана любого треугольника делит угол пополам - нет
11. Все углы ромба равны. - нет
12. Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны. - нет
13. Площадь квадрата равна произведению двух его смежных сторон. - да
14. Любой четырехугольник, у которого все стороны равны, является ромбом. - да
15. Сумма углов равнобедренного треугольника равна 180 градусам. - да
16. Существует такой четырехугольник, у которого два противолежащих угла равны, а другие два противолежащих угла не равны. - нет
17. Диагонали параллелограмма равны. - нет
18. У любой трапеции боковые стороны равны. - нет
19. В тупоугольном треугольнике все углы тупые. - нет
20. В любом параллелограмме диагонали точкой пересечения делятся пополам. - да
60 градусов
Объяснение:
Сумма углов параллелограмма 360 градусов.
∠ D = ∠B = 120 градусов.
∠А = ∠ С = (360 - 120*2)/2 = (360-240)/2 = 60 градусов
В треугольнике АВМ (поставьте на стороне АD букву М) ∠М = 90 градусов, ∠А = 60 градусов, значит угол АВМ = 180 - (90 + 60) = 180 - 150 = 30 градусов.
В треугольнике СВN (поставьте на стороне CD букву N) ∠N = 90 градусов, ∠C = 60 градусов, значит угол СВN = 180 - (90 + 60) = 180 - 150 = 30 градусов.
Поскольку ∠В = 120 градусов, то х (∠МВN) = 120 - (30+30) = 120 - 60 = 60 градусов