Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
Соеденим пункты М, Т и О и получим сечение МТО перпендикулярное плоскости А1ДСАД = ДД1 = 4 см ( по условию)Найдем диогональ АД1 по т. Пифагора из прямоугольного тр. АДД1:AД1^2 = AД^2 +ДД1^2AД1^2 = 4^2 + 4^2AД1^2= 32АД1 = 4 под корнем 2АД1 = АС = Д1С = 4 под корнем 2 (диогонали равных квадратов)МО, МТ и ТО - средние линии треугольников АДД1, АДС и ДД1С соответственноМО = АД1/ 2 = 2 под корнем 2МТ = АС/ 2 = 2 под корнем 2ТО = Д1С/ 2 = 2 под корнем 2МТО - ровносторонний треугольникПлощадь МТО ровна ( см во вложении), где а- сторона этого треугольника.
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К.
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают.
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.