Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
Объяснение:
1) Т.к. АВ=ВС, то треугольник АВС-р/б, следовательно, ВD - медиана, биссектриса, высота.
Т.к. ВD - биссектриса, то в треугольнике АВD угол АВD= 120°:2=60°
Т.к. ВD - высота, то в треугольнике АВD угол АDВ = 90°
Сумма углов треугольника равна 180°, следовательно, угол ВАD = 180°-(60°+90°)=180°-150°=30°.
2) Мы узнали, что угол ВАD=30°, найдём длину ВD.
Треугольник АВD - прямоугольный.
В прямоугольном треугольнике катет, лежащий напротив угла в 30° равен половине гипотенузы.
Угол ВАD = 30°, угол ВАD лежит напротив ВD, следовательно ВD = 0,5АВ=0,5×18=9 (см).
ответ: 1) 60°, 90°, 30°.
2) 9 см.
Вот чертёж, дано, надеюсь, напишешь.