Площадь прямоугольника равна произведению длин его смежных сторон.
Пусть стороны прямоугольника а и b, а его площадь равна S,
Докажем, что S=ab
Достроим прямоугольник до квадрата, длина стороны которого равна сумме длин сторон данного прямоугольника, т.е. а+b ( см. рисунок, данный в приложении)
Площадь квадрата равна квадрату его стороны
S(кв)=(a+b)²=a²+2ab+b²
В то же время площадь этого достроенного квадрата состоит из суммы площадей двух меньших квадратов, чьи площади равны а² и b², и площадей двух прямоугольников со сторонами а и b, чью площадь мы приняли равной S.
1) Бічна грань - прямокутник. ЇЇ розміри -dsin α*dcos α = d²sin2α/2. Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2. 2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2. Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3, Площа основи - (√2)² = 2. Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1). 3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані. Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди. Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.
Площадь прямоугольника равна произведению длин его смежных сторон.
Пусть стороны прямоугольника а и b, а его площадь равна S,
Докажем, что S=ab
Достроим прямоугольник до квадрата, длина стороны которого равна сумме длин сторон данного прямоугольника, т.е. а+b ( см. рисунок, данный в приложении)
Площадь квадрата равна квадрату его стороны
S(кв)=(a+b)²=a²+2ab+b²
В то же время площадь этого достроенного квадрата состоит из суммы площадей двух меньших квадратов, чьи площади равны а² и b², и площадей двух прямоугольников со сторонами а и b, чью площадь мы приняли равной S.
Отсюда
a²+2ab+b²=а²+b²+S+S ⇒
2ab=2S.
Следовательно,
S=ab.