М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
UzZzeR
UzZzeR
21.06.2021 16:35 •  Геометрия

В равнобедренном треугольнике ABC с основанием AC, AB = 5, ∠ A = 30°. Найдите AC.

👇
Ответ:
SaviRay
SaviRay
21.06.2021
Для начала, давайте разберемся, что такое равнобедренный треугольник. Равнобедренный треугольник - это треугольник, у которого два равных стороны. В нашем случае, это треугольник ABC, где AB = AC.

Мы знаем, что AB = 5. Для решения задачи, нам понадобится использовать знание о свойствах треугольника и углов.

У нас есть информация, что ∠A = 30°. Мы также можем использовать это свойство для решения задачи.

Давайте наметим наш треугольник и обозначим вершины A, B и C:

B
/ \
AB/ \ AC
/ \
A----------C

Так как у нас равнобедренный треугольник, то мы можем провести биссектрису из вершины A, которая разделит угол ∠A пополам и также разделит основание AC на две равные части. Обозначим точку пересечения биссектрисы с основанием AC как точку D:

B
/ \
AB/ \ AC
/ \
A--D------C

Так как треугольник равнобедренный, то ∠B = ∠C. Биссектриса AD разделяет ∠A на два равных угла ∠BAD и ∠CAD. Так как ∠BAD = ∠CAD, то у нас имеем два равных треугольника - треугольник ABD и треугольник ACD.

Теперь мы можем использовать свойства треугольников для решения задачи. Мы знаем, что в треугольнике ABD у нас есть две равные стороны - AB и AD. Мы также знаем, что ∠BAD = 30°.

Мы можем использовать знание о треугольниках и свойство синуса для вычисления стороны AC.

Давайте обратимся к треугольнику ACD. Зная ∠A = 30°, мы можем использовать формулу синуса, чтобы найти сторону AC:

AC / sin ∠C = AD / sin ∠A

Мы знаем, что AC = 2AD, так как биссектриса AD разделяет основание AC на две равные части.

Подставляем это значение в формулу:

2AD / sin ∠C = AD / sin ∠A

Упрощаем формулу:

2 / sin ∠C = 1 / sin ∠A

Теперь подставим значения углов ∠A = 30° и ∠C = 180° - 2∠A = 180° - 2 * 30° = 120°:

2 / sin 120° = 1 / sin 30°

Мы знаем, что sin 120° = sin (180° - 120°) = sin 60° = √3 / 2 и sin 30° = 1 / 2.

Подставляя эти значения, получаем:

2 / (√3 / 2) = 1 / (1 / 2)

Упрощаем:

2 * 2 / √3 = 1 * 2

4 / √3 = 2

Чтобы избавиться от знаменателя √3, умножим числитель и знаменатель на √3:

4 / √3 * √3 / √3 = 4√3 / 3

Таким образом, получаем AC = 4√3 / 3.

Ответ: AC = 4√3 / 3.
4,7(80 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ