В правильной треугольной призме сторона основания равна 3дм, боковое ребро 4 дм. Вычислить площадь сечения, проходящего через сторону нижнего основания и противолежащую вершину верхнего основания
Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.
ВМ=КД по условию задачи. ВС=СД как стороны прямоугольника. угол АВМ равен углу СДК как накрестлежащие при пересечении параллельных прямых секущей. Эти треугольника равны по двум сторонам и углу между ними. ------------ Получившийся четырехугольник - параллелограмм. Четырехугольник АМСК составлен из двух треугольников. Они равны, т.к. углы при М и К равны как дополняющие до 180 градусов углы ВМА и СКD, стороны АМ=СК равны в равных треугольниках, а МК - общая сторона. Углы при М и К накрестлежащие при пересечении АМ и СК секущей, следовательно, АМ || СК, и параллельность и равенство противоположных сторон четырехугольника - признак параллелограмма. Четырехугольник АМСК будет ромбом, если исходный прямоугольник - квадрат.
Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.