Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3
Следовательно, площадь полной поверхности призмы равна
Формула: S=(n-2)\times 180, где S – сумма внутренних углов многоугольника, n – число сторон многоугольника. Цифра «180» – это сумма углов треугольника, а n-2 – это число треугольников, на которые можно разбить многоугольник. Таким образом, формула вычисляет сумму углов треугольников, на которые можно разбить многоугольник. Этот метод применим к правильным и неправильным многоугольникам. Суммы внутренних углов правильного и неправильного многоугольников с одинаковым число сторон равны. Все углы правильного многоугольника равны. Углы неправильного многоугольника имеют разные значения, но их сумма равна сумме углов правильного многоугольника. Например, если дан шестиугольник, то число сторон равно 6. Для того чтобы вичеслить многоугольник из числа сторон вычтите 2, а затем результат умножьте на 180. Вы получите суммe внутренних углов многоугольника (в градусах).
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
= 18 + 4√3