1)Рассмотрим треугольник АВС - равнобедренный, т.к. АС=ВС как касательный выходящие из одной точки.
Угол ОАС=углу ОВС=90 градусов по свойству касательной и радиуса окружности, значит, угол САВ=углу СВА=90-40=50 градусов
Угол АСВ=180-(50+50)=80 градусов.
ответ: 80 градусов
Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
Объяснение: Вот и объяснение
сумма углов выпуклого четырехугольника равен 360°( это по формуле 180(n-2). n-это количество углов, в нашем случае количество углов равен 4, т.к четырехугольник. получает 180(4-2)=180*2=360°)
2:3:4:9 это все части. цифра 9 самая большая, значит это самый большой угол четырехугольника так как он состоит из 9 частей
но чтобы найти 9 частей нам сначала нужно найти 1 часть, для этого составим уравнение
пусть 1 часть это х, тогда 2 части это 2х, 3 части это 3х, 4 части это 4х , а 9 частей это 9х. их сумма равна 360°
2х+3х+4х+9х=360
18х=360
х= 20 это одна часть
самый большой угол состоит из 9 частей поэтому это число нужно умножить на 9
20*9= 180°---большой угол