Попробую стать лаской. Хотя обычно я злой, очень злой.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора, х^2 = 24^2 - 12^2 = 432 х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда у / 24 = 24 / (12*корень(3)) Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3) Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.
Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
62 и 28
Объяснение: