Дано: ав и сд диаметры окружности Доказать что асIIвд
Рассмотрим ΔАОС и ΔВОД: Они равны по двум сторонам и углу между ними т.к. ав диагональ значит ао=ов как радиус окружности сд диагональ, значит со=од как радиус окружности угол аос=углу вод как накрест лежащие углы
Из равенства треугольников следует равенство углов ∠асо=∠одв и ∠сао=∠дво
Рассмотрим отрезки ас и вд и секущую ав: углы при отрезках и секущей называются накрест лежащими углами и они равны из равенства треугольников по теореме о параллельности прямых: Если накрест лежащие углы равны, то прямые параллельны.
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
Доказать что асIIвд
Рассмотрим ΔАОС и ΔВОД:
Они равны по двум сторонам и углу между ними т.к.
ав диагональ значит ао=ов как радиус окружности
сд диагональ, значит со=од как радиус окружности
угол аос=углу вод как накрест лежащие углы
Из равенства треугольников следует равенство углов
∠асо=∠одв и ∠сао=∠дво
Рассмотрим отрезки ас и вд и секущую ав:
углы при отрезках и секущей называются накрест лежащими углами и они равны из равенства треугольников
по теореме о параллельности прямых: Если накрест лежащие углы равны, то прямые параллельны.