ответ: 0 или 2 или 4.
Объяснение:
Сначала выясним, сколько тупых углов может быть образовано при пересечении двух прямых.
Если прямые перпендикулярны, то все углы прямые, значит, тупых углов нет.
Если прямые не перпендикулярны, то из двух смежных углов (∠1 и ∠2) один будет тупым. Тупым будет и равный ему вертикальный угол. Значит, тупых углов будет 2.
При пересечении двух прямых третьей может быть три случая:
1. Секущая с перпендикулярна обеим прямым.
Тогда тупых углов - 0.
2. Секущая с перпендикулярна одной прямой, а другой не перпендикулярна.
Тупых углов - 2.
3. Секущая с не перпендикулярна ни одной прямой.
Тупых углов - 4.
20°
Объяснение:
1. Выполним дополнительное построение - проведем отрезок BD.
Получили равносторонний ΔCBD (т.к. ∠С=60° и BC=CD), в котором BC=CD=BD и ∠BCD=∠CBD=∠BDC=60°.
2. Тогда ΔABD - равнобедренный с AB=BD и ∠BAD=∠BDA=x° (см. рис 1)
3. ΔABO - равнобедренный с AB=AO, ∠OAB=x и ∠ABO=∠AOB.
4. Исходя из 1, 2, 3 получаем (см. рис. 2):
∠ODC=(60-x)°
∠COD=180°-60°-(60-x)°=(60+x)°
∠AOB=∠COD=(60+x)° - как накрест лежащие
∠ABO=∠AOB=(60+x)°
Из суммы углов ΔABO:
∠OAB+∠ABO+∠AOB=180° ⇒
x°+(60+x)°+(60+x)°=180°
3x°=60°
x=20°