1)
Обозначим коэффициент отношения радиусов х
Тогда один радиус равен 3х,второй - 5х
3х+5х=16
8х=16
х=2
3х= 6 см - это первы радиус
5х*2=10см - это второй радиус
2)
В четырехугольнике сумма его углов равна 360 градусов.
Два угла между касательными и радиусами равны по 90 градусов и сумма их 180 градусов.
Угол между касательными равен
180-130 =50 градусов
3)
Треугольник с такими углами - прямоугольный.
Центр описанной окружности лежит на его гипотенузе, и радиус окружности равен половине АВ
радиус 10:2=5 см
высота разбивает треугольник на два маленьких. Эти прямоугольные треугольники равны соответствующим треугольникам по стороне (высота) и двум прилежащим углам (один угол прямой, другой равен 90 градусов минус равный угол).
Из равенства прямоугольных треугольников следует либо равенство трёх сторон исходного треугольника (две его стороны являются гипотенузыми сответственно равных прямоугольных треугольников, а третья является суммой катетов)
Либо равенство по стороне (составленной из катетов равных треугольников) и двум прилежащим углам
А Н Д
проведем высоту СН. Имеем квадрат АВСН со стороной 10см и равнобедренный прямоугольный треугольник СНД (угол Н=90град). НД=10см
большее основание АД=АН+НД=10+10=20