Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому ∠RQD = ∠DAR. Также, поскольку четырёхугольник ABCD – вписанный, то ∠BCD = 180° – ∠DAR. Cледовательно, ∠RQD + ∠BCD = 180°, то есть прямые PT и RQ параллельны.
Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому PQ = AC·sin∠BCD. Aналогично, RT = BD·sin∠ABC. Но из вписанности четырёхугольника ABCD следует, что Значит, PQ = RT, то есть трапеция – равнобокая.
Обозначим каждую часть диагонали х Вся диагональ 3х Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х² Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна 1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора равна√(3х)²-а² Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение 9х^4=a^4 3x²=a² x=a√3/3 диагональ равна а·√3 вторая сторона по теореме ПИфагора а√2
Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому ∠RQD = ∠DAR. Также, поскольку четырёхугольник ABCD – вписанный, то ∠BCD = 180° – ∠DAR. Cледовательно, ∠RQD + ∠BCD = 180°, то есть прямые PT и RQ параллельны.
Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому
PQ = AC·sin∠BCD. Aналогично, RT = BD·sin∠ABC. Но из вписанности четырёхугольника ABCD следует, что
Значит, PQ = RT, то есть трапеция – равнобокая.