1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Объяснение:
Можно пристроить к кубу ABCDA1B1C1D1 другой такой же куб следующим образом. Продлим ребра А1А, В1В, С1С, D1D за точки А,В,С,D. на длину ребра куба и через полученные точки A2,B2,C2,D2 проведем плоскость II АВС. Ясно, что я просто "приставил снизу" еще один куб, идентичный исходному.
Очевидно, что А2С II AC1, поэтому угол между СЕ и АС1 равен углу А2СЕ.
Замкнем треугольник А2СЕ, проведя А2Е в плоскости А2А1D1D2.
В треугольнике А2СЕ очень просто вычисляются все стороны.
A2C = √3; (это - диагональ куба, ребро принимаем за единицу длины, то есть ребро куба 1).
из прямоугольного тр-ка А2ЕD2 с катетами A2D2 = 1; D2E = 3/2; находим
А2Е = √(1^2+(3/2)^2) = √13/2;
аналогично из треугольника DCE
CЕ = √(1 + (1/2)^2) = √5/2;
Обозначим косинус угла А2СЕ как х. По теореме косинусов
13/4 = 3+5/4 - x*2*√(5*3)/2;
x = 1/√15 = √15/15; это - косинус искомого угла.