1. відповідь: а) р=36cм; б) s=24sqrt(3)см^2. а) знайдемо третю сторону за теоремою косинусів: с^2=a^2+b^2-2ab*cos(c)=16^2+6^2-2*16*6*cos(60градусів) =196 c=sqrt(196)=14. тому p=a+b+c=16+6+14=36. б) знайдемо площу за формулою: s=(ab*sin(c))/2=(16*6*sin(60градусів)) /2=24sqrt(3). 2. відповідь: сторона=4см, площа=16см^2. площа круга дорівнює pi*r^2. тому r=sqrt(8). сторона квадрата, вписаного в коло, дорівнює sqrt(2)*r= sqrt(2)*sqrt(8)=4. відповідно площа квадрата дорівнює 4^2=16. 3. відповідь: 384см^2. довжина першого катета дорівнює 12+20=32. бісектриса ділить сторону трикутника на відрізки, що відносяться як 2 інші сторони. тому (другий катет): (гіпотенуза) =12: 20=3: 5. нехай другий катет дорівнює 3х і гіпотенуза дорівнює 5х. тоді, за теоремою піфагора, (3х) ^2+32^2=(5х) ^2 16x^2=1024 x=8. тому другий катет дорівнює 3*8=24. площа прямокутного трикутника дорівнює половині добутку його катетів: s=32*24/2=384.
Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.