Первое немогу решить, так как давно это было,не могу вспомнить всех формул.
Решение задачи №2:
а) Найдем гипотенузу BD треугольника BCD:
BD=корень из (BC^2+CD^2)= корень из(5^2 + 5^2)= корень из 50
Назовем проекцию диагонали BD1, она является катетом прямоугольного треугольника BDD1. Найдем ее:
BD1=кореньиз(BD^2-DD1^2)=кореньиз((корень из 50)^2-1^2)=кореньиз49=7
ответ: проекция диагонали BD на плоскость равна 7 см.
б)я не знаю, но по моему они могут быть и не перпендикулярны.
если только не имеется в виду плоскость в которой лежит CDD1, тогда да, т.к. ВС перпендикулярен СDD1
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
Остальные 3 отрезка тоже равны 2,4,6 по свойству отрезков касательных к окружности.
Т.е. из каждой вершины треугольника к окружности идут по 2 равных отрезка.
Поэтому периметр треугольника равен
2(2+4+6)=24 см