Конструкция имеет форму прямой треугольной призмы, стороны основания которой 9 м, 10 м и 17 м. Найдите высот ( в метрах) в этой конструкции, если площадь ее полной поверхности равна 360 м^2
Объяснение:
Призма прямая, значит боковое ребро является высотой призмы .
S(полное)= 2S(осн)+ S(бок)
S(осн) =S(треуг)= √p (p−a) (p−b) (p−c) , ф. Герона ,
S(бок)=Р*h, h- высота ( в метрах) в этой конструкции.
Р=9+10+17=36 , полупериметр Р/2=р=18 .
р-9=9, р-10=8, р-17=1. Тогда S(треуг)= √(18* 9* 8 *1)=9*4=36, 2S(осн)=72.
360=72+36*h , 360-72=36*h ,h= 8 м
1)Если диагонали трапеции взаимно перпендикулярны, то ее площадь равна полупроизведению диагоналей.S=56. Можно вывести.ПУстьABCD трапеция, а т.О пересечение диагоналей, тогда S=AO*BD/2+CO*BD/2=BD/2*(AO+OC)=(BD*AC)/2
2)ABCD трапеция. тогда боковые стороны будут по 13 см. А так как в трапецию вписана окружность, сумма оснований =26. S=(AD+BC)*H/2=13*H.Найдем висоту трапеции.Расстояние от точки B до точек касания =4.от т.A до точек касания 9( аналогично от двух других вершин0. получаем BC=8, AD=18.Опусти две высоты и найды по т.Пифагора высоту трапеции,получаем 12 и тогда S=13*12=156
ответ: Б
Объяснение:
Сумма углов треугольника равна 180