Основание пирамиды sabcd является ромб abcd c диагоналями 12 и 16.высота пирамиды 6.4. боковая грань пирамиды наклонена к плоскости основания под одним и тем же углом .найдите площадь боковой поверхности?
Надо найти радиус окружности, вписанной в ромб (если грани имеют одинаковый наклон, то проекцией апофемы является радиус вписанной окружности). Тут все просто, половинки диагоналей и сторона образуют прямоугольный треугольник, в котором этот радиус является высотой. Боковая сторона при этом 10 (треугольник 6,8, и само собой 10)
площадь (это площадь 1/4 основания!) 24, r = 2*24/10 = 4.8 Высота пирамиды 6.4, вместе с r = 4.8 и апофемой боковой грани они образуют прямоугольный треугольник. Тут опять (3,4,5), то есть апофема 8 (этот треугольник подобен египетскому, коэффициент пропорции 1.6).
Периметр ромба 40, значит площадь боковой поверхности 40*8/2 = 160;
Т.К. это прямоугольная трапеция, то 2 угла(А,В) у нее =90 градусов. Следовательно, сумма 2-х других углов(С,D) =180(по теореме о сумме углов прямоугольника). Т.К. угол С=135, то угол D=45. Роль высоты СН играет АВ, Т.К. она равна высоте. СН делит трапецию на квадрат и равнобедренный треугольник(угол НСD=45 и угол D=45). Т.К. треугольник НСD равнобедренный, то DH=CH. АD=AH+HD. AH=BC =>AD=BC+HD => AD=60/ Площадь трапеции = произведению полусуммы ее оснований на высоту. =>S=((30+60)/2)*30=1350 ответ: 1350
Сказка о четырехугольниках Как известно, Арифметика – царица всей математики, очень постарела и почти отжила свой век. К этому времени подросла ее внучка – красивая, величественная Геометрия. Чтобы взойти на трон, нужен ей был сильный и богатый Наслышана была Геометрия об интересных свойствах четырехугольников. Пригласила Геометрия четырехугольников к себе в царство математики испытать счастье. Но путь был долгий, трудный. Вместе с параллелограммом, ромбом, прямоугольником и квадратом отправилась и старая упрямая равнобедренная трапеция. Сначала они должны были лететь самолетом. Но в самолет попали только те, у кого противоположные стороны были попарно параллельны и диагонали точек пересечения делятся пополам. (Какие четырехугольники отправились самолетом?) Трапеция не стала отчаиваться, она поехала поездом. Из-за плохой погоды самолет сделал вынужденную посадку, и здесь пришлось четырехугольникам пройти дополнительные испытания. Трудности преодолели четырехугольники, у которых диагонали взаимно перпендикулярны и являются биссектрисами углов, и четырехугольники, у которых диагонали равны. (Кто остался?) Во дворец пустили не всех. Было главное условие: диагонали должны быть равными. (Кто во дворец?) К этому моменту прибыла и трапеция. Ее тоже пустили, т.к. у равнобедренной трапеции диагонали равны. Геометрия приказала четырехугольникам перечислить все свои свойства. Трапеция сказала: «У меня диагонали равны и углы при основании равны». Прямоугольник сказал: «У меня диагонали равны и точкой пересечения делятся пополам. Противоположные стороны равны и все углы прямые». Квадрат нежно добавил: «А я обладаю всеми свойствами параллелограмма, ромба и прямоугольника одновременно». Геометрия была в восторге, что квадрат был богат на свойства и со своими прямыми углами так хорошо сидел на троне. И он был провозглашен царицы в царстве математики. Прямоугольник был назначен главным садовником, а трапеция стала самой главной на кухне. Параллелограмм и ромб – 2 брата – знают, что без них сказки бы и не было.
Надо найти радиус окружности, вписанной в ромб (если грани имеют одинаковый наклон, то проекцией апофемы является радиус вписанной окружности). Тут все просто, половинки диагоналей и сторона образуют прямоугольный треугольник, в котором этот радиус является высотой. Боковая сторона при этом 10 (треугольник 6,8, и само собой 10)
площадь (это площадь 1/4 основания!) 24, r = 2*24/10 = 4.8 Высота пирамиды 6.4, вместе с r = 4.8 и апофемой боковой грани они образуют прямоугольный треугольник. Тут опять (3,4,5), то есть апофема 8 (этот треугольник подобен египетскому, коэффициент пропорции 1.6).
Периметр ромба 40, значит площадь боковой поверхности 40*8/2 = 160;