Задача 22:
∠B=180°-∠ABD=180°-112°=68° - как смежные
ΔABC - равнобедренный (AB=BC), поэтому ∠A=∠C
∠A=∠C=(180°-68°):2=112°:2=56°
ответ: ∠A=∠C=56°
Задача 24:
ΔABC - равнобедренный (AC=BC), поэтому ∠A=∠B
∠A=∠B=(180°-75°):2=105°:2=52,5°
∠B=∠DBK=52,5° - как вертикальные
ответ: ∠DBK=52,5°
Задача 29:
∠DAB=180°-48°=132° - как смежные
ΔABD - равнобедренный (AD=AB), поэтому ∠BDA=∠ABD
∠BDA=∠ABD=(180°-132°):2=48°:2=24°
ΔCBE - равнобедренный (CB=CE), поэтому ∠CBE=∠CEB
∠CBE=∠CEB=56°
Отсюда ∠BCE=180°-56°*2=180-112°=68°
∠ACB=180°-∠BCE=180°-68°=112° - как смежные
∠ABC=180°-(∠ACB+∠BAC)=180°-(112°+48°)=180°-160°=20°
∠DBE=∠ABD+∠ABC+∠CBE=20°+24°+56°=100°
ответ: ∠DBE=100°, ∠D=24°
Задача 25:
∠DОC=180°-∠DОA=180°-137°=43°
∠DОC=∠AОB=43° - как вертикальные
ΔDОC - равнобедренный (DО=ОC), поэтому ∠D=∠C
∠D=∠C=(180-43°):2=68,5°
ΔAОB - равнобедренный (AB=АО), поэтому ∠AОB=∠В
∠AОB=∠В=43°
∠A=180°-43°*2=180°-86°=94°
ответ: ∠A=94°, ∠В=43°, ∠C=68,5°, ∠D=68,5°
Найти углы треугольника FEP
ответ: ∠EFP = 60° ; ∠FEP = 46° ; ∠FPE = 74°
Объяснение:
∠EFP + ∠1 =180° (как смежные углы)
∠EFP =180° - ∠1 =180° - 120° = 60°
- - -
∠FEP +∠3 = 180° (соответствующие углы ) ⇒ a || b
∠FEP = 180° - 134 = 46°
∠FPE +∠EFP +∠FEP =180° (сумма внутренных углов треугольника) ;
∠FPE = 180° - ( ∠EFP +∠FEP) =180°-( 60° +46°) = 74°
можно начинать c вычисления углов ΔCBP
∠BCP =∠2 = 60° (вертикальные углы)
∠PBC + ∠3 = 180° ( смежные углы) ⇒
∠PBC = 180° - ∠3 = 180° - 134° = 46°
∠BPC =180° -(∠BCP+∠PBC) =180° -(60° +46°) =74°
∠FPE =∠BPC = 74° ( вертикальные углы )
∠FEP = 180° - (∠EFP +∠FPE ) =180° -( 60° +74°) = 46°
б)74*2=148 як RM является биссектрисой угла TRS