По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Известно, что в треугольнике ABC сторона AB=7, AC=4. Найдите отношение, в котором биссектриса угла A (AD) делит медиану, проведённую из вершины B (BM). В ответе укажите отношение большего отрезка к меньшему (BK / KM ).
Дано: AB =7 ; AC =4 ; ∠CAD = ∠BAD (D ∈ [CB ] ) AM= AC ;
( BK / KM ) - ?
K = [ AD ] ∩ [ BM ] * * * K точка пересечения биссектрисы AD и медианы BM . * * * Из ∆ ABM : BK / KM = AB / AM (свойство биссектрисы внутреннего угла ∆ ) ⇔ BK / KM = AB / (AC/2 ) ⇔ BK / KM = 2AB / AC ⇔ BK / KM = =2*7/4 =3,5 .
14 ед.
Объяснение:
14 ед.
Объяснение:
Дано: Δ АВС - равнобедренный, АВ=ВС, ∠В=120°, АН - высота, АН=7. Найти АС.
В тупоугольном треугольнике высота падает на продолжение противоположной стороны (см. чертеж).
Имеем Δ АСН - прямоугольный.
∠С=(180-120):2=30°
Против угла 30° лежит катет АН=7, поэтому гипотенуза АС=2АН=7*2=14 ед.