1) В параллелограмме противолежащие стороны равны и параллельны, противолежащие углы равны.
ДЕ - биссектриса, ⇒∠ЕDА=∠ЕDС.
∠СЕD=∠ЕDА – накрестлежащие. ⇒
треугольник СЕD равнобедренный, а так как углы при основании ЕD равны 60°, он - равносторонний.
Угол С=60°, угол А=угол С=60°. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°. ⇒∠В=∠D=120°
СD=ЕС=АС=4 см. АD=ВС=3+4=7 см
Р (АВСD)=2•(7+4)=22 см
Четырехугольник АВЕD - равнобедренная трапеция, так как ВЕ║|АD, и АВ=СД⇒АВ=ЕД.
-------------------
2) ∆ СЕD прямоугольный, Сумма острых углов прямоугольного треугольника 90°. ⇒
угол ЕСD=90°- 45*=45°⇒ ∆ СЕD – равнобедренный.
CE=ED=5
Перпендикуляр СЕ параллелен и равен АВ. -⇒
АВ=СЕ=5 см
Sabc = 384 см².
Объяснение:
Так как точка S равноудалена от вершин треугольника АВС, она проецируется в центр описанной окружности этого треугольника - точку О. А так как треугольник АВС прямоугольный, то этот центр находится на середине гипотенузы АВ. Точка J по этой же причине находится на отрезке SO, перпендикулярном плоскости АВС. АО = ВО = СО как радиусы описанной окружности.
JO = SO - SJ = 40 - 25 = 15 см. Тогда в треугольнике CJO по Пифагору
СО = √(CJ²-JO²) = √(25²-15²) = 20 cм. АВ = 2·СО = 40 см.
Это гипотенуза. Второй катет равен по Пифагору:
АС = √(АВ²-ВС²) = √(40²-24²) = 32 см.
Площадь треугольника АВС равна
Sabc = (1/2)·АС·ВС = (1/2)·32·24 = 384 см².