пусть авс-прямоугольный треугольник. тогда гипотенуза ас=17 см. пусть медиана выходит из точки а пусть аm — медиана(тогда bm=cm) обозначим катет bc через y, ac через x, тогда bm=cm=y\2,по теореме пифагора получаем систему и з двух уравнений первое х^2+y^2=17^2 второе x^2+(y\2)^2=15^2 отняв от первое второе получаем 3\4*(y^2)=64 y^2=256\3 y=(+\-)16\корень(3)=(+\-)16\3*корень(3) нас удовлетворяет только положительный корень(длина катета не может быть отрицательным числом), так что y=16\3*корень(3) подставив найденное значение y в первое уравнение находим х х^2+y^2=17^2 х^2+256\3=17^2 х^2=611\3 х=(+\-)корень(611\3) (нас удовлетворяет только положительное значение по той же причине что и выше) х=корень(611\3)ответ корень(611\3) и 16\3*корень(3) катеты треугольника
1.3) Теорема. От любой данной точки можно отложить направленный отрезок, равный данному, и притом – только один.
Если данный направленный отрезок – нулевой, то утверждение теоремы очевидно. Пусть отрезок – ненулевой. Проведем через точку С прямуюl, параллельную (АВ). Направленный отрезок, который нам надо отложить, обязан лежать на этой прямой (ибо он коллинеарен ) и иметь длину |АВ|. От точки С можно отложить ровно два таких отрезка – обозначим изи(рис. 4), причем(почему?). В силу (Н4) если, то, а если, то. Таким образом, в обоих возможных случаях существует ровно один искомый отрезок, что и требовалось доказать.
(1.4) Теорема. Все направленные отрезки разбиваются на непересекающиеся классы отрезков таким образом, что любые два отрезка из одного класса равны между собой, а из разных классов – не равны.
Зафиксируем произвольную точку О, и для каждого направленного отрезка , исходящего из этой точки, обозначим через К() класс (т.е., совокупность) всех равных ему отрезков. При этом каждый направленный отрезок попадет ровно в один из таких классов, а именно, в класс равного ему направленного отрезка, отложенного от точки О. Поскольку любые два отрезка из одного и того же класса К() равны отрезку, они равны и между собой (теорема 1.2). Теперь допустим, что нашлись равные отрезкиК() иК(). Но тогда===, откуда по той же теореме 1.2=. Таким образом, если два отрезка равны, то они лежат в одном классе, то есть отрезки из разных классов не могут быть равными. В частности, это означает, что разные классы не могут пересекаться.