Центр окружности, описанной около прямоугольника, - это точка пересечения его диагоналей, а радиус - половина диагонали.
Тогда диагональ:
d = 2R = 2 · 7,5 = 15 см.
Пусть х - одна часть, тогда стороны 3х и 4х.
Две смежные стороны и диагональ образуют прямоугольный треугольник. По теореме Пифагора:
d² = (3x)² + (4x)²
9x² + 16x² = 225
25x² = 225
x² = 9
x = 3 (x = - 3 не подходит по смыслу задачи)
3 · 3 = 9 см - одна сторона
3 · 4 = 12 см - другая сторона прямоугольника.
P = (9 + 12) · 2 = 21 · 2 = 42 см
Дано:
AB = AC
угол BAK = 35°
BC = 10 см
ВК = KC
угол ABC = 55°
Найти:
ВК, угол KAC, угол BAC, угол AKB, угол ACB
ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
ответ: 5 см, 35°, 70°, 90°, 55°.