Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
9 см
Объяснение:
Задание
Хорда CD длиной 13 см пересекает хорду АВ в точке N, BN=3 см, AN=12 см, CN меньше ND. Найти длину ND
Решение
Теорема: хорды точкой пересечения делятся на отрезки, произведения которых равны.
BN · AN = 3 · 12 = 36
Пусть CN = х₁ , ND = х₂.
Составим систему уравнений и найдём ND:
х₁ + х₂ = 13 (1)
х₁ · х₂ = 36 (2)
Из уравнения (1) выразим х₂ и подставим в уравнение (2):
х₂ = 13 - х₁
х₁ · (13 - х₁) = 36
13х₁ - х₁² - 36 = 0
х₁² - 13х₁ + 36 = 0
х₁ = 6,5 - √(6,5²-36) = 6,5 - 2,5 = 4
СN = 4 см
х₂ = 6,5 + √(6,5²-36) = 6,5 + 2,5 = 9
ND = 9 см
ответ: ND = 9 см