М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Определите вид треугольника АВС, если <А =54° , <В = 37

👇
Ответ:

Остроугольный

Объяснение:

Сначала найдём третий угол

180-(54+37)=89 градусов

Так как все углы меньше 90 градусов, этот треугольник остроугольный

4,7(18 оценок)
Ответ:
Диана2404
Диана2404
06.03.2022

остроугольный , т.к. сумма углов треугольника равна 180° , то есть если вычесть из 180° остальные два получим последний угол.

Объяснение:

180°-54°-37° =89° все углы острые значит треугольник остроугольный

4,7(5 оценок)
Открыть все ответы
Ответ:
margaian2005
margaian2005
06.03.2022

1)53

2)45;45

4)50

Объяснение:

1)Сумма острых углов прямоугольного треугольника равна 90 градусам. Значит что бы найти один из острых углов надо от 90 отнять известный угол.

2)В равнобедренном прямоугольном треугольнике острые углы одинаковы,значит каждый угол будет по 45°

4)Сумма смежных углов равна 180°. Что бы найти неизвестный смежный угол нужно от 180 отнять известный угол. Из этого мы получаем,что угол СDA равен 110°. Что бы найти угол АСD мы вспоминаем что сумма острых углов в прямоугольном треугольнике равна 90°. От 90 отнимаем 70,получаем 20. Из чертежа мы видим что угол ACD и BCD одинаковы. Значит нужный нам ACD тоже 20°. Далее вспоминаем,что сумма всех углов треугольника равна 180°. От 180 отнимаем сумму двух известных нам углов. 180-(110+20)=50°

4,4(25 оценок)
Ответ:
LutsenkoRodion
LutsenkoRodion
06.03.2022
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
4,8(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ