ед².
Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка
- центр
- точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне
основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в
.
Т.к. - равносторонний ⇒
- высота, медиана, биссектриса.
Высота и апофема
имеют общее основание, а именно точку
, т.к.
- медиана, а апофема
делит
пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как
- высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как
- высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на
.
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. =
ед².
бок. поверх. =
(
осн.
), где
- апофема.
осн.
ед.
⇒ бок. поверх. =
ед².
⇒ полн. поверх. =
ед².
Обозначим параллелограмм буквами ABCD. Пусть диагональ BD образует углы:
угол DBA=30 градусов, угол DB=90 градусов
Обозначим сторону AB=a, сторону BC=b. Так как у параллелограмма противолежащие стороны равны, то AB=CD=a, BC=AD=b
По условию задачи периметр параллелограмма равен:
P=AB+BC+CD+AD=a+b+a+b=2(a+b)=36
a+b=18
Рассмотрим треугольник ABD. Он прямоугольный, угол BDA=90 градусов
Выразим сторону AD:
AD=AB*sinABD=a*sin30=a/2
Значит, b=a/2
Подставим b вместо a:
a+b=36
a+a/2=18
3a/2=18
a=12
b=6
ответ: стороны параллелограмма равны 6см и 12см.
сторона равна площадь делить на другую сторону. будет 4