Из вершины Д проведём перепендикуляр на ВС, получили прямоугольный треугольник с острым углом С=30 градусов. Против этого угла лежит катет, равный половине СД, т.е. 7 корней из 3 делёное на 2. Теперь проведём перепендикуляр из вершины В к прямой АД, получили прямоугольный треугольник АВК с углом В, равным 30 градусов и катет ВК, прилежащий к этому углу равен 7 корней из 3 делёное на 2. Катет этого треугольника, лежащий против угла в 30 градусов (АК) обозначим за х, а гипотенузу АВ за 2х. Теперь по теореме Пифагора: АВ квадрат - АК квадрат = ВК квадрат. х=3,5 - это АК. Теперь АВ = 3,5*2=7. ответ: 7.
Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
ответ: 7.