1)(х-9)^2+(у+1)^2+z^2=7^2 центр (9;-1;0) R=7 (немного не понятно в первой скобкие (х-9)или (х+9),если (+),то первая воордината по оси х будет с о знаком (-) .просто (х 9) не должно быть.) 2)А (-3;0;4) R =8 (x+3)^2+y^2+(z-4)^2=64 3)(x-4)^2+(y+6)^2+z^2=9 A (4;-3;1) подставим значения точки А х=4,у=-3,z=1 в уравнение сферы (4-4)^2+(-3+6)^2+1^2=9 0+9+1=9 это не верно,значит точка А не лежит на сфере.10>9 значит точка А лежит за сферой. 4)х^2+у^2+ z^2+2z -2x=7 (x^2-2x)+y^2+(z^2+2z)-7==0 (x^2-2x+1)+y^2+(z^2+2z+1)-9=0 (x-1)^2+y^2+(z+1)^2=9 центр (1;0-1) R=3
Так как угол ABH равнобедренный(угол AHB=90 градусов,а угол BAM=45 градусам,следует что угол ABH=45 градусам,следует треугольник ABH равнобедренный)то сторона АН=ВН,следует площадь АВН=6*6:2(по следствию площади в прямоугольных треугольниках).Чертим высоту к стороне ВС из точки М (продлеваем сторону ВС) и у нас получается отрезок МН1.У нас получается прямоугольник ВМН1Р.Сторона НМ=АМ-АН,следует сторона НМ=ВН1,следует площадь прямоугольника ВН1МН=6*14,следует Площадь трапеции равна (6*6:2)+(6*14)=100см в квадрате.
Відповідь:
60√3 см²
Пояснення:
Дано: КМРТ - трапеція, КМ=РТ=10 см, МР=7 см. ∠Т=60°. Знайти S(КМРТ).
Проведем висоти МС=РН. ΔКМС=ΔРТН за катетом та гіпотенузою, отже КС=ТН.
∠ТРН=90-60=30°, отже ТН=1/2 РТ=10:2=5 см.
КС=ТН=5 см. КТ=КС+СН+ТН=5+7+5=17 см.
РН=√(РТ²-ТН²)=√(100-25)=√75=5√3 см.
S(КМРТ)=(МР+КТ):2*РН=(7+17):2*5√3=60√3 см²