М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ЖаннаLife
ЖаннаLife
12.03.2021 01:08 •  Геометрия

Очень Задача
Не лежащие в одной плоскости прямые mk, me и mf пересекают плоскость α в точках a, b и c, а параллельную ей плоскость β в точках a1, b1 и c1.
1. докажите, что:
а) соответственные стороны треугольников abc и a1b1c1 па- раллельны;
б) соответственные углы тре- угольников abc и a1b1c1 равны; в) треугольники abc и a1b1c1
подобны.
2. найдите площадь треуголь-
ника a1b1c1, если ma: aa1 =2: 1,
Sabc = 4 см^2
От
Побольше объяснений

👇
Открыть все ответы
Ответ:
YNWA12
YNWA12
12.03.2021
Красный, синий и большой треугольники подобны - одинаковый острый угол, и прямой
x/z = 9/16
z/y = 9/16
y = 16z/9
x = 9z/16
Теорема Пифагора для красного треугольника
x² + z² = 9²
(9z/16)² + z² = 9²
81/256*z² + z² = 81
(81 + 256)/256*z² = 81
337z² = 81*256
z² = 81*256/337
z = 9*16/√337 = 144/√337 см
x = 9z/16 = 81/√337 см
y = 16z/9 = 256/√337 см
Малый катет большого треугольника
x + z = (144 + 81)/√337 = 225/√337 см 
Большой катет большого треугольника
y + z = (256 + 144)/√337 = 400/√337 см 
Площадь 
S = 1/2*225/√337*400/√337 = 45000/337 см² 
Найдите площадь прямоугольного треугольника,если биссектриса прямого угла делит гипотенузу на отрезк
4,8(67 оценок)
Ответ:
Linkin251
Linkin251
12.03.2021
Расстояние от точки до плоскости h
длинная наклонная l₁ = 2√6 см
короткая наклонная l₂
Проекции наклонных на плоскость t₁ и t₂
---
h - катет против угла в 30°, равен половине длине большей наклонной
h = l₁/2 = √6 см
Вторая наклонная - гипотенуза, высота - катет, проекция второй наклонной - второй катет - совместно образуют прямоугольный треугольник, равнобедренный, с углом при основании 45°, и проекция равна высоте
h = t₂
Вторую наклонную найдём по теореме Пифагора
h² + t₂² = l₂²
(√6)² + (√6)² = l₂²
6 + 6 = l₂²
12 = l₂²
l₂ = √12 = 2√3 см
---
Угол между наклонными равен 90° по условию.
И расстояние d между точками касания наклонных с плоскостью по т. Пифагора.
d² = l₁² + l₂²
d² = (2√6)² + (2√3)²
d² = 4*6 + 4*3
d² = 24 + 12 = 36
d = √36 = 6 см
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ