Вправильной треугольной пирамиде сторона основания равна "а". высота равна " н". найти: 1) боковое ребро пирамиды 2)плоский угол при вершине пирамиды 3)угол между боковым ребром и плоскостью основания пирамиды 4)двугранный угол при боковом ребре
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Расстояние от точки К до прямой LM — это высота, проведённая из вершины К на сторону LM. Обозначим высоту через h. Треугольник КLM прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. Гипотенуза LM — с, тогда катет КL — 1/2 с. Площадь треугольника равна половине произведения катетов. Один катет — 1/2 с, другой — 24,8 S=1/2*1/2c*24,8=6,2с Площадь так же равна половине произведения высоты (h) на основание (c). S=1/2*h*c Приравняем правые части 6,2с=1/2*h*c h=6,2*2=12,4 ответ 12,4 см
Пусть точка О - центр правильного ΔАВС.Построим AK┴BC и отрезок DK. По теореме о 3-х перпендикулярах DK┴BC.
а) В правильной пирамиде все боковые ребра равны, поэтому достаточно вычислить длину ребра AD.
OA=R, R - радиус описанной около ΔАВС окружности.
Объяснение:
б) ΔADB=ΔBDC=ΔADC (по трем сто ронам), отсюда следует, что плоские углы при вершине пирамиды равны.
По теореме косинусов имеем:
AB2=AD2=DB2 - 2ADВсе боковые ребра составляют с плоскостью основания одинако вые углы. Это следует из равенства ΔDAO=ΔDBO=ΔDCO
г) Все боковые грани наклонены к плоскости основания под
одинаковым углом. Из ΔDOК имеем:∙DB∙cosα,