1) В четырёхугольнике ABCD: AB=BC=5, ∠ABC=∠ADC=90∘, AD>CD. Известно, что площадь четырёхугольника равна 16. Найдите длину отрезка AD.
2) На сторонах AB, BC, CD и DA квадрата ABCD отмечены точки K, L, M и N соответственно так, что AK=BL=CM=AN. Известно, что ∠CLM=18∘. Найдите ∠MKN.
S = ab.
Доказательство
Рассмотрим прямоугольник со сторонами a, b и площадью S.
Докажем, что S = ab.
Достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
Так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.
С другой стороны, этот квадрат составлен из данного прямоугольника с площадью S, равного ему прямоугольника с площадью S (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. Так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников:
(a + b)2 = S + S + a2 + b2, или a2 + 2ab + b2 = 2S + a2 + b2.
Отсуда получаем: S = ab, что и требовалось доказать.