8. <DBC=63°
9. P = 36 ед.
10. Не полное условие.
Объяснение:
Дуга BD равна 2*27° = 54° (так как вписанный угол, опирающийся на эту дугу, равен половине градусной меры этой дуги).
Дуга BDAC = 180°, так как ВС - диаметр.
Дуга DAC = DDAC - BD = 180-54 = 126°. =>
<DBC = 63° (вписанный, равен половине градусной меры дуги, на которую он опирается).
9. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники. В нашем случае эти биссектрисы имеют общую точку Е на стороне ВС. Значит
АВ = ВЕ и EC = CD => BC = 2AB.
AB = СD и BC = AD (противоположные стороны параллелограмма).
Рabcd = 6*AB = 36 ед.
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
V=96см³
Объяснение:
В ромбе с углами 60°; 120°, меньшая диагональ ромба равна стороне ромба.
ВD=AD=4см.
∆В1ВD- прямоугольный треугольник
tg<B1DB=B1B/BD
tg60°=√3
√3=В1В/4
В1В=4√3 см.
Sосн=АD²*sin<BAD
<BAD=60°
sin60°=√3/2
Sосн=4²*√3/2=16√3/2=8√3 см²
V=Sосн*В1В=8√3*4√3=96см³