Если окружность касается осей координат, то центр окружности О отстоит от начала координат на величину радиуса. Рассмотрим прямоугольный треугольник, где ОА - гипотенуза, равная радиусу R, а 2 катета равны: R - 2 и R - 1. По Пифагору R² = (R - 2)² + (R - 1)². Раскроем скобки) R² = R²-4R+4+R²-2R+1. Получаем квадратное уравнение R²-6R+5 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*5=36-4*5=36-20=16; Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-(-6))/(2*1)=(4-(-6))/2=(4+6)/2=10/2=5; x₂=(-√16-(-6))/(2*1)=(-4-(-6))/2=(-4+6)/2=2/2=1. Второй корень не удовлетворяет условию задачи и его отбрасываем. ответ: центр (-5;5), R = 5.
Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны. Вот св-ва Противоположные стороны параллелограмма равны. АВ=СD, BC=ADДиагонали параллелограмма пересекаются, и точка пересечения делит их пополам. |AO=OC|, |BO=OD|Сумма углов, прилежащих к одной стороне, равна 180°( по свойству параллельных прямых).Точка пересечения диагоналей является центром .Биссектриса проведённая из вершины параллелограмма отсекает равнобедренный треугольник.Сумма всех углов равна 360°( сумма углов многоугольника = 180( n - 2), где n кол-во углов).
Рассмотрим прямоугольный треугольник, где ОА - гипотенуза, равная радиусу R, а 2 катета равны: R - 2 и R - 1.
По Пифагору R² = (R - 2)² + (R - 1)².
Раскроем скобки)
R² = R²-4R+4+R²-2R+1.
Получаем квадратное уравнение R²-6R+5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*5=36-4*5=36-20=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-(-6))/(2*1)=(4-(-6))/2=(4+6)/2=10/2=5;
x₂=(-√16-(-6))/(2*1)=(-4-(-6))/2=(-4+6)/2=2/2=1.
Второй корень не удовлетворяет условию задачи и его отбрасываем.
ответ: центр (-5;5), R = 5.