Объяснение:1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем
1 способ. можно воспользоваться правилом, что синус угла от 0° до 90° возрастает, синус угла от 90° до 180° убывает.
а) sin 150°; sin 135°; sin 90° ; sin 60°
в) использовать формулу , чтобы свести все углы в первую четверть.
sin (180° - α) = sin α
sin 60° = sin (180° - 60°) = sin 120°
sin 90° = sin (180° - 90°) = sin 90°
sin 135° = sin (180° - 135°) = sin 45°
sin 150° = sin (180° - 150°) = sin 30°
ответ: sin 150°; sin 135°; sin 90° ; sin 60°
по таблице косинусов углов
cos(0°)=cos(0)= 1
cos(60°)=cos(π/3)=1/2
cos(90°)=cos(π/2)= 0
cos(135°)=cos3 x π/4=,7071)
cos(150°)=cos5 x π/6=(-0,8660)
ответ cos(150°). cos(135°). cos(90°). cos(60°)