Объяснение:
Из точки Е проведем отрезок ЕК, параллельный АВ.
Противоположные стороны параллелограмма параллельны, тоесть СВ//DE => ЕА//КВ и DE//CK
Так как в четырехугольнике КЕАВ стороны попарно параллельны, следовательно КЕАВ – параллелограмм.
ВЕ – биссектриса угла КВА по условию и диагональ параллелограмма КЕАВ.
Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм – ромб.
Следовательно: КЕАВ – ромб
У ромба все стороны равны. Исходя из этого: ЕА=КВ=АВ=8 см.
СD=AB=8 так как противоположные стороны параллелограмма равны.
Р(АВСD)=АВ+ВС+CD+AD=AB+BK+KC+CD+DE+EA=8+8+KC+8+DE+8=32+KC+DE
Так как Р(ABCD)=46 см по условию, то получим уравнение:
32+КС+DE=46
KC+DE=14 см
Так как ЕК//АВ, а АВ//CD, то ЕК//CD;
DE//CK (доказано ранее);
Исходя из этого: CDEK – параллелограмм.
Противоположные стороны параллелограмма равны, тоесть DE=CK.
Тогда 2DE=14 см
DE=7 см
ответ: 7 см
Если принять, что BKD прямоугольный треугольник, то BK и KD, являются катетами прямоугольного треугольника, соответственно, гипотенуза данного треугольника должна быть равна квадратному корню из суммы квадратов катетов (Теорема Пифагора), т.е. 144+25=169, корень из 169 = 13, что равно BD.
Из этого исходит что треугольник ABK также является прямоугольным. Площадь прямоугольного треугольника равна половине произведения катетов, т.е. (12*4)/2=24
Также просто уже и рассчитать площадь параллелограмма.
Площадь равна произведению стороны умноженной на высоту. Сторона AD равна 9, раз уж вышеприведенные треугольники прямоугольные, то BK является высотой параллелограмма, соответственно площадь:9*12=10 (c)