1) Произведением вектора a→ на число k ( k ≠0) называется вектор b→, модуль которого равен ∣∣∣b→∣∣∣=∣∣k∣∣⋅∣∣a→∣∣, при этом: - векторы a→ и b→ сонаправлены, если >0; - векторы a→ и b→ противоположно направлены, если <0. 2) Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
b || a - вектора b и a параллельны a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0 a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0 |b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
ответ:да могут
Объяснение:
Возьми линейку:
1 окружность на линейке-0
2 окружность на линейке-12
Нарисуй точки и проведи циркулем