ответ:Сумма углов,прилежащих к одной боковой стороне трапеции равна 180 градусов
Если угол D равен 60 градусов,то угол С равен
<С=180-60=120 градусов
Диагональ АС отсекла от трапеции равнобедренный треугольник(АВ=ВС) ,а углы при основании АС равны между собой
<ВАС=<ВСА=120-90=30 градусов
<В=180-30•2=120 градусов,тогда
<А=180-120=60 градусов
Вывод-трапеция равнобедренная,т к углы при каждом основании равны между собой
Номер 2
Углы при боковых сторонах трапеции в сумме равны 180 градусов
Трапеция прямоугольная
<S=<M=180-90=90 градусов
Диагональ отсекла от трапеции равнобедренный треугольник,углы при основании которого равны между собой
<RMK=<К=(180-50):2=65 градусов
<R=180-65=115 градусов
Объяснение:
∠ТАМ = 27°
Объяснение:
Дано:
∠ВАС = 34°
∠АВС = 46°
АМ - биссектриса
АТ - высота
Найти:
∠ТАМ - угол между высотой и биссектрисой
Найдём третий угол Δ АВС
∠АСВ = 180° - (∠ВАС + ∠АВС) = 180° - (34° + 46°) = 100°
Поскольку ∠АСВ тупой, то высота АТ опущена на продолжение стороны ВС, и
∠ТАМ = ∠ТАС + ∠САМ
∠ТСА = внешний угол про вершине С треугольника АВС, поэтому
∠ТСА = ∠ВАС + ∠АВС = 34° + 46° = 80°
Тогда поскольку АТ - высота, и ∠АТС = 90°, то
∠ТАС = 90° - ∠ТСА = 90° - 80° = 10°
∠САМ является половиной угла ВАС, так как АМ - биссектриса
∠САМ = 0,5 ∠ВАС = 0,5 · 34° = 17°
∠ТАМ = ∠ТАС + ∠САМ = 10° + 17° = 27°