Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АВ и делящее его в отношении 1:3, и проходящей параллельно ребру ВС. Найдите площадь сечения.
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
Меньшая боковая сторона будет равна высоте трапеции, проведённой из вершины тупого угла к большему основанию. После того как мы опустим высоту из тупого угла, рассмотрим образовавшийся прямоугольный треугольник, в нём один из острых углов 45 гр (по условию), значит и второй острый угол тоже 45 гр, тогда мы видим, что образовавшийся треугольник равнобедренный, его катеты равны разности большего и меньшего оснований, т.е. 15 - 10 = 5 см, Меньшая боковая сторона будет равна высоте трапеции равна её высоте и равна катетам треугольника. ответ: 5 см