Построение в приложении
Объяснение:
Угол между двумя пересекающимися плоскостями (плоскостью АВСD и секущей плоскостью EАВF) равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения, не зависимо от выбора этой третьей плоскости. В нашем случае плоскости, перпендикулярные линии пересечения АВ - это грани АА1D1D и ВВ1С1С. Cледовательно надо построить угол ЕАD в грани АА1D1D, равный 60°. Для этого построим угол АРН, равный 30°, в этой грани.
Проведем циркулем дугу окружности с центром в точке А радиуса R, равного стороне куба, а на стороне куба AD отметим точку Н, которая делит сторону AD пополам. Проведя прямую НН1, перпендикулярную стороне AD до пересечения с дугой окружности, получим точку Р. Соединив точки А и Р, получим угол АРН, равный 30°, так как катет АН равен половине гипотенузы АР. Соответственно, угол РАН = 60° по сумме острых углов прямоугольного треугольника.
Проведя прямую АР до пересечения с ребром А1D1 в точке Е, получим прямую АЕ, по которой плоскость сечения пересекает грань АА1D1D.
Аналогично найдем точку F на ребре ВС1 грани ВВ1С1С. Или найдем эту точку, проведя через вершину В прямую, параллельную прямой АЕ, так как параллельные грани пересекаются секущей плоскостью по параллельным прямым.
Сечение EABF - искомое сечение.
Радиус окружности описанной вокруг равностороннего треугольника находится по формуле:
R=√3/3 - где а-сторона треугольника
Высота в таком треугольнике можно найти по формуле:
h=√3/a*a - где а -сторона треугольника
По этой формуле найдём сторону равностороннего треугольника:
а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см)
Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности:
R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
ответ: Высота данного треугольника равна 2см