Із центра кола O до хорди AB, яка дорівнює 10 см, проведено перпендикуляр OC. Знайдіть його довжину, якщо радіус дорівнює 6 см. Из центра круга O до хорды AB, равной 10 см, проведены перпендикуляр OC. Найдите длину, если радиус равен 6 см. Памагит
В основании параллелепипеда, параллелограмме a=3 см, b=8 см, ∠α=60°, d - меньшая диагональ основания. В параллелограмме меньшая диагональ лежит напротив меньшего угла. В параллелограмме пара острых и пара тупых углов. ∠60° острый, значит d лежит напротив него. Площадь боковой поверхности: Sб=P·h=2(a+b)·h, где h - высота параллелепипеда. h=Sб/(2(a+b))=286/(2(3+8))=13 см. По теореме косинусов d²=a²+b²-2ab·cos60=3²+8²-2·3·8/2=49, d=7 см. Диагональное сечение прямого параллелепипеда - это прямоугольник, образованный диагоналями основания и боковыми рёбрами. Площадь диагонального сечения: Sд=d·h=7·13=91 см² - это ответ.
Дано:а параллельна b ,Доказать:все точки каждой из двух параллельных прямых равноудалены от другой прямой.Доказательство:Проведем перпендикуляры из точек М и К.Прямая МN перпендикулярна прямой b и КL перпендикулярна прямой b.Перпендикуляры равны(так как прямые параллельны)Таким образом если из каждой точки на любой прямой провести перпендикуляр к другой прямой,то все перпендикуляры этих параллельных прямых равны и эти параллельные прямые равноудалены друг от друга как и все их точки,что и требовалось доказать
В параллелограмме меньшая диагональ лежит напротив меньшего угла. В параллелограмме пара острых и пара тупых углов. ∠60° острый, значит d лежит напротив него.
Площадь боковой поверхности: Sб=P·h=2(a+b)·h, где h - высота параллелепипеда.
h=Sб/(2(a+b))=286/(2(3+8))=13 см.
По теореме косинусов d²=a²+b²-2ab·cos60=3²+8²-2·3·8/2=49,
d=7 см.
Диагональное сечение прямого параллелепипеда - это прямоугольник, образованный диагоналями основания и боковыми рёбрами.
Площадь диагонального сечения:
Sд=d·h=7·13=91 см² - это ответ.